The state of System Dynamics education:
Accumulating better practitioners

Panel Discussion

Inspired by the System Dynamics Competence Framework for Teaching SD by Martin Schaffernicht and Stefan Groesser (published in the SD Review)

Overview

• Motivation

• Survey: https://cardiff.onlinesurveys.ac.uk/survey-of-sd-teaching-practices

 Preliminary survey results

• Panel-group discussion
 – Sally Brailsford
 – Siôn Cave
 – Jim Duggan
 – Hisham Tariq
Respondents

<table>
<thead>
<tr>
<th>Trainer expertise vs. proportion of main job using SD</th>
<th>0 to <25%</th>
<th>25 to <50%</th>
<th>50 to <75%</th>
<th>75 to 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Competent (C)</td>
<td>5%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Proficient (P)</td>
<td>5%</td>
<td>5%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Expert (E)</td>
<td>37%</td>
<td>21%</td>
<td>16%</td>
<td>5%</td>
</tr>
<tr>
<td>Master (M)</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>5%</td>
</tr>
</tbody>
</table>

- Most have >10 years experience of using and teaching SD
Preliminary survey results

Top Tips

✓ *Always* have a working model
✓ Use stocks and flows with data and time-charts – don’t focus only on the qualitative structure
✓ Hands-on examples
✓ Use your *own* case studies and examples vs. *Use simple* examples not from specialist field of the learners

✓ Start with simple models
✓ Explanation is key – ensure the basic principals are fully understood
✓ Take it slowly and be prepared for students to find it difficult - *reassurance*
✓ Get students to identify the key structure from a stock and flow format

✓ Model the issue not the data!
✓ Include teaching on data – how to populate the model (sources, quality, quant & qual)

✓ Audience background essential for orienting training
✓ Assess current ability and start there; “*when in doubt, bias towards the basics*”
Skills develop in stages

<table>
<thead>
<tr>
<th>Skills</th>
<th>Complexity Level (cl)</th>
<th>Competence Development Stages</th>
<th># of Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Beginner</td>
<td>Advanced Beginner</td>
</tr>
<tr>
<td>Policy evaluation and design</td>
<td>cl3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>cl2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>cl1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Model validation</td>
<td>cl3</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>cl2</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>cl1</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Model creation</td>
<td>cl3</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>cl2</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>cl1</td>
<td>1</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>n. a.</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>System dynamics project</td>
<td>cl3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>initialization</td>
<td>cl2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cl1</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Model analysis</td>
<td>cl3</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cl2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cl1</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n. a.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dynamic reasoning</td>
<td>n. a.</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>System dynamics language</td>
<td>n. a.</td>
<td>10</td>
<td>26</td>
</tr>
</tbody>
</table>

Total numbers of outcomes

<table>
<thead>
<tr>
<th></th>
<th>Beginner</th>
<th>Advanced Beginner</th>
<th>Competent</th>
<th>Proficient</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>cl3</td>
<td>15</td>
<td>140</td>
<td>84</td>
<td>26</td>
<td>265</td>
</tr>
</tbody>
</table>
Skills

• Language
 – Bookwork and formal definitions
 – Vs. analogies, real world examples, stating with simulation
 – Vs. not covered specifically just trainer consistently using terms

• Dynamic reasoning
 – “Follow the causal logic”
 – Emphasis of over time
 – Case studies / examples then formal definitions
 – Simple, small models for experimentation

• Model analysis
 – Divide and conquer
 – Use differences as the learning route (differences between real world and model)
 – Case studies / examples
 – NOT using causal loop diagrams
 – Coursework adapting an existing model
Skills

• Project initialisation
 – Is SD the right tool?
 – Careful requirements definition
 – Focus on structure in case studies – not building from scratch
 – Beyond the scope of Beginner/Adv. Beginner?
 Or covered elsewhere (general OR modelling approach)
 {Flagged as needing room for improvement}

• Model creation
 – Focus on ‘observable’ variables
 – Live model building \(\rightarrow\) never be further than 30mins away from a working model
 – Extend rather than create from scratch
 Or create a model together for students to develop themselves
 – Low focus on equations \(\rightarrow\) structure focus (and tools to view it nicely)
Skills

- Model validation
 - Devise steady state and then add
 - *Inseparable* from creation teaching
 - Case studies and encouraging use of *reference models* when building
 - Coverage can be limited by teaching method and limits of licensed software (free versions)
 - Bookwork → Sterman

- Policy evaluation and design
 - Not covered by several respondents
 - Demonstrate good *and* bad outcomes
 - Model *without* policy implications first... then introduce these decisions
 - Group work → trial solutions on a *running* model

- Long thin teaching
Competency Weightings

(Preliminary survey results)

(D) Project initialisation
(E) Model creation
(C) Model analysis
(B) Dynamic reasoning
(G) Policy evaluation and design

(A) Language